1.7 Outras regras para calcular derivadas

Regra 5 (Derivada de um produto)
\[(fg)' = f'g + fg'\]

Regra 6 (Derivada de um quociente)
\[\left(\frac{f}{g} \right)' = \frac{f'g - fg'}{g^2}\]

Regra 7 Sendo \(g\) uma função derivável, e \(c\) uma constante, quando \(g \neq 0\) temos
\[\left(\frac{c}{g} \right)' = -\frac{cg'}{g^2}\]

Exemplo 1.6 Calcular \(y'\), sendo \(y = \frac{2}{x^3 + 1}\)

Solução. Aplicando a regra 7, temos
\[y' = \left(\frac{2}{x^3 + 1} \right)' = -\frac{2(x^3 + 1)'}{(x^3 + 1)^2} = -\frac{2 \cdot 3x^2}{(x^3 + 1)^2} = \frac{-6x^2}{(x^3 + 1)^2}\]

Atenção! Ao calcular derivadas de expressões fracionárias, JAMAIUS desenvolva o quadrado do denominador!

Exemplo 1.7 Calcular \(y'\), sendo \(y = \frac{x^3 - 1}{x^3 + 1}\)

Solução. Aplicando a fórmula para a derivada de um quociente, temos
\[y' = \left(\frac{x^3 - 1}{x^3 + 1} \right)' = \frac{(x^3 - 1)'(x^3 + 1) - (x^3 + 1)'(x^3 - 1)}{(x^3 + 1)^2} = \frac{6x^2}{(x^3 + 1)^2}\]
1.8 Problemas

1. Utilizando regras de derivação previamente estabelecidas, calcule as derivadas das seguintes funções.

\(a) \ f(x) = \frac{4x - 5}{3x + 2} \)

\(b) \ f(w) = \frac{2w}{w^3 - 7} \)

\(c) \ s(t) = t^2 + \frac{1}{t^2} \)

<table>
<thead>
<tr>
<th>Respostas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (a) \ f'(x) = \frac{23}{(3x + 2)^2})</td>
</tr>
<tr>
<td>(b) \ f'(w) = \frac{-4w^3 - 14}{(w^3 - 7)^2})</td>
</tr>
<tr>
<td>(c) \ s'(t) = 2t - \frac{2}{t^3})</td>
</tr>
</tbody>
</table>